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Figure 1. 4DTAM jointly estimates camera-egomotion, appearance, geometry and scene dynamics without any template.

Abstract

We propose the first 4D tracking and mapping method that
jointly performs camera localization and non-rigid surface
reconstruction via differentiable rendering. Our approach
captures 4D scenes from an online stream of color images
with depth measurements or predictions by jointly optimiz-
ing scene geometry, appearance, dynamics, and camera
ego-motion. Although natural environments exhibit com-
plex non-rigid motions, 4D-SLAM remains relatively un-
derexplored due to its inherent challenges; even with 2.5D
signals, the problem is ill-posed because of the high di-
mensionality of the optimization space. To overcome these
challenges, we first introduce a SLAM method based on
Gaussian surface primitives that leverages depth signals
more effectively than 3D Gaussians, thereby achieving ac-
curate surface reconstruction. To further model non-rigid
deformations, we employ a warp-field represented by a
multi-layer perceptron (MLP) and introduce a novel camera
pose estimation technique along with surface regularization
terms that facilitate spatio-temporal reconstruction. In ad-
dition to these algorithmic challenges, a significant hurdle
in 4D SLAM research is the lack of reliable ground truth
and evaluation protocols, primarily due to the difficulty of

4D capture using commodity sensors. To address this, we
present a novel open synthetic dataset of everyday objects
with diverse motions, leveraging large-scale object models
and animation modeling. In summary, we open up the mod-
ern 4D-SLAM research by introducing a novel method and
evaluation protocols grounded in modern vision and ren-
dering techniques.

1. Introduction

The world we live in has many moving elements. Rivers
flow, trees sway, cookies crumble, and humans walk. Al-
though Simultaneous Localization and Mapping (SLAM)
methods which assume that most of the world is static
are highly useful, embodied agents which aim to navigate
and interact with their environments in the most general
way should be able to operate in dynamic scenes. There
are several ways to segment and ignore moving scene ele-
ments, and a SLAM system can be assembled by integrating
these individual modules so that it can reconstruct the static
parts of a scene and estimate camera ego-motion. How-
ever, in this work, we aim for a more comprehensive spatio-
temporal (4D) reconstruction of scenes exhibiting signifi-
cant dynamic motion. Our primary focus is on a unified
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framework that leverages intrinsic capabilities of the under-
lying scene representation without heavily relying on prior
assumptions about moving elements. 4D-SLAM with gen-
eral scene motion is difficult primarily because of the com-
plex and high-dimensional nature of modeling non-rigid
motions (and potential topological changes) while simul-
taneously optimizing the pose of a moving camera. There
is much more redundancy than in rigid SLAM, and some
prior assumptions are needed to combat this. Another chal-
lenge lies in the lack of datasets to train and/or evaluate
techniques. Recent advances in computer vision and graph-
ics make it a good time to revisit this problem. New 3D
representations (e.g. neural fields and Gaussian splats) al-
low differentiable rendering of complex 3D scenes and op-
timization via 2D observations, and to model deformation
fields smoothly without more specific assumptions. Also,
the availability of high-quality 3D meshes on Internet and
rendering software (e.g. Blender) gives the ability to render
non-rigidly moving objects with ground truth.

We present 4DTAM, a novel approach for 4D Tracking
And Mapping in dynamic scenes. We use Gaussian sur-
face primitives to represent the scene and introduce a neural
warp-field represented by a multi-layer perception (MLP)
to model continuous temporal changes. We then utilize dif-
ferentiable rendering to jointly optimize the scene geome-
try, appearance, dynamics, and camera ego-motion from an
online stream of a single RGB-D camera. This enables ac-
curate 3D reconstruction and real-time rendering, even in
the presence of complex non-rigid deformations. To fa-
cilitate future research, we also introduce a new synthetic
dataset of dynamic objects. Our focus in this dataset is
realistic, complex motion of scenes that are not well rep-
resented by existing deformable object models. Animated
3D meshes are rendered and the ground truth depth, surface
normals, and foreground masks are extracted together with
the camera poses/intrinsics. This dataset provides challeng-
ing scenarios for 4D reconstruction methods. We also re-
lease the full rendering script to allow the generation of cus-
tom 4D datasets. Our experimental results demonstrate that
4DTAM achieves good performance in both camera track-
ing and scene reconstruction in the presence of dynamic
objects. It can handle the complex motion of articulated
objects (e.g., drawers) and non-rigid objects (e.g., curtains,
flags, and animals), showcasing its potential for applica-
tions in robotics, augmented reality, and other fields requir-
ing real-time dynamic scene understanding. We primarily
use RGB-D sensor input, but also demonstrate an extension
to monocular RGB streams by incorporating a monocular
depth prediction network in the supplementary material.

In summary, the contributions of this paper are:

• 4DTAM, the first 4D tracking and mapping method that
uses differentiable rendering and Gaussian surface primi-
tives for dynamic environments.

• The first 2DGS [17]-based SLAM method with analytic
camera pose gradients, normal initialization, and regular-
ization to fully exploit depth signals.

• An MLP-based warp-field for modeling non-rigid scene,
complemented by a novel camera localization technique
and rigidity regularization of surface Gaussians.

• A novel 4D-SLAM dataset with complex object mo-
tions, ground-truth camera trajectories, and dynamic ob-
ject meshes, along with an evaluation protocol.

• Extensive evaluations demonstrating that the method
achieves state-of-the-art performance.

2. Related Work

2.1. Visual SLAM
Visual SLAM has been an extensively researched field, with
Dense SLAM specifically focusing on capturing detailed
scene geometry [35] and semantics [30]. A central as-
pect of these methods lies in the choice of scene repre-
sentation and the corresponding optimization framework.
Dense SLAM methods based on traditional scene repre-
sentations, such as volumetric Truncated Signed Distance
Functions (TSDF) [22, 34, 60] or Surfels [44, 61], project
2D observations into 3D space and employ specific data fu-
sion algorithms. While effective, these methods often fail
to keep consistency between the model and sensor obser-
vations across multiple viewpoints, posing challenges for
long-term operation.

However, recent advancements in graphics hardware
have facilitated the adoption of differentiable rendering
frameworks, which have revolutionized inverse rendering
and scene reconstruction [23, 31, 33, 37]. Differentiable
rendering ensures multi-view consistency through stream-
lined backpropagation, enhancing scene reconstruction ac-
curacy. Notably, 3D Gaussian Splatting (3DGS) [25]
has gained attention due to its flexible resource alloca-
tion and rapid forward rendering capabilities. Initially de-
veloped for photorealistic view synthesis, recent research
has extended its application to surface reconstruction [15,
66]. Enhanced methods, such as 2D Gaussian Splatting
(2DGS) [17], achieve superior geometry reconstruction by
reducing the Gaussian dimension and explicitly defining
surface normals. These differentiable rendering representa-
tions have been applied to visual SLAM, from coordinate-
based MLPs [52] to explicit voxel grids [21, 55, 63, 67],
points [43], and 3D Gaussians [24, 29, 62].

2.2. SLAM for 4D Scene Reconstruction
3D reconstruction of dynamic scenes has been exten-
sively studied, with notable achievements using optimiza-
tion methods, even for unknown non-rigid objects observed
by a single moving RGB camera [14, 53]. However, these
approaches typically require batch optimization and are
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limited to smaller scenes. In contrast, dynamic SLAM tar-
gets incremental, reconstruction and tracking of large, con-
tinuously moving scenes ideally in real-time. Most methods
to date have relied on RGB-D data from moving depth cam-
eras.

While many methods detect and exclude dynamic ob-
jects to focus on static scene reconstruction [45], full spa-
tiotemporal reconstruction (which we refer to as 4D-SLAM)
requires more advanced solutions. For instance, tracking
and reconstructing rigid moving objects separately [42] or
employing parametric shape models for known semantic
classes like humans or animals [26] are effective strategies.
Specialized domains, such as endoscopic imaging, have uti-
lized scene-specific priors or deformation models to handle
non-rigid dynamics [28, 41].

An incremental 4D-SLAM for general dynamic scenes
has remained more challenging, but has been addressed
based on various regularizing assumptions and representa-
tions. DynamicFusion [36] pioneered a line of work [13, 19,
47, 48] which captures temporal evolution in the scene ge-
ometry by jointly optimizing a canonical volumetric repre-
sentation (e.g., TSDF volume [36]) and a deformation field.
As the solution space is extremely high-dimensional, ad-
ditional constraints are often introduced to regularize the
motion field [47, 48] or to align visual features [4, 19]. Re-
cent advances in 3D representations, such as neural fields
and Gaussian primitives, have opened new possibilities for
dynamic scene reconstruction. Canonical radiance and
motion fields can be jointly optimized via differentiable
rendering, as demonstrated with NeRF [38, 40, 54] and
SDF [7, 56]. For 3D Gaussians, which can explicitly rep-
resent points, motion can be estimated either through per-
primitive trajectories [27] or learnable motion bases [57].
However, warp-field-based motion representation offers in-
herent smoothness regularization, leveraging the properties
of neural fields [10, 18, 64, 65]. Most existing methods,
however, rely on known camera poses or multi-camera se-
tups to capture dense spatiotemporal observations. While
DyNoMo [46] supports camera pose optimization, its 3D
Gaussian representation is not suited for geometrically ac-
curate reconstruction. In contrast, our 4DTAM framework
enables 4D reconstruction using a single RGB-D camera,
jointly optimizing camera poses, appearance, geometry, and
dynamics, making it practical for most embodied agents.

2.3. Datasets for 4D Reconstruction

4D reconstruction has been studied extensively for the case
of the human body. Datasets like Human3.6M [20], Deep-
Cap [16], and ZJU-MoCap [39] capture diverse human
motions under a multi-camera setup. The cameras are
fixed, synchronized, and calibrated to reduce the difficulty
in establishing dense multi-view correspondences. Only
a small number of datasets provide single-stream RGB-

D sequences captured from a moving camera [5, 12, 47].
Recovering the camera poses is not trivial for such real-
world captures, and additional post-processing (e.g. ro-
bust depth map alignment [56]) is required. Another chal-
lenge lies in ground truth acquisition. Besides the depth
measurements, other ground truths (e.g., scene flow, object
mask) often require manual labeling. On the contrary, syn-
thetic datasets [6, 59] provide perfect ground truths. Recent
advances in open-source datasets [9] and rendering soft-
ware [8] also close the synthetic-to-real domain gap sig-
nificantly. To this end, we introduce a new high-quality
synthetic dataset tailored for 4D reconstruction and camera
pose estimation.

3. Method

3.1. 2D Gaussian Splatting
Our geometric scene representation is based on 2D Gaus-
sian Splatting (2DGS) [17]. Unlike 3D Gaussian Splatting
(3DGS), which uses blob-like splats, 2DGS functions as
a stretchable surfel with explicitly defined surface normal
directions. This property makes 2DGS particularly well-
suited for non-rigid scene reconstruction with a single cam-
era, where effectively handling 2.5D input signals is critical.

Each 2D Gaussian G is represented by its 3D mean po-
sition Pµ, rotation R ∈ SO(3), color c, opacity o, and a
scaling vector S ∈ R2. The rotation matrix R is decom-
posed as R = [tu, tv, tw], where tu and tv represent two
principal tangential vectors, and tw is the normal vector, de-
fined as tw = tu × tv . For simplicity, spherical harmonics
are omitted in this work.

The 2D Gaussian function is parameterized on the local
tangent plane in world space as:

P (u, v) = Pµ + sutuu+ svtvv = H(u, v, 1, 1)T (1)

whereH =

[
sutu svtv 0 pk

0 0 0 1

]
=

[
RS pk

0 1

]
(2)

For a point u = (u, v) in the tangential plane of 2D
Gaussian (uv space), its projection onto the image plane is
given by

x = (xz, yz, z, 1)T = WP(u, v) = WH(u, v, 1, 1)T

(3)
where W ∈ R4×4 is the transformation matrix from world
space to screen space.

To avoid numerically unstable matrix inversion of M =
(WH)−1, 2DGS applies ray-splat intersection by find-
ing the intersection of non-parallel planes (x-plane and y-
plane). The ray x = (x, y) is determined by the intersec-
tion of the x-plane hx and the y-plane hy , represented as
hx = (−1, 0, 0, x)T and hy = (0,−1, 0, y)T, respectively.
In the uv coordinates of the 2D Gaussian, this is expressed
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Figure 2. Method overview of 4DTAM.

as:

hu = (WH)Thx and hv = (WH)Thy (4)

The intersection point meets the following condition,

hu · (u, v, 1, 1)T = hv · (u, v, 1, 1)T = 0 (5)

This leads to an solution for the intersection point u(x):

u(x) =
h2
uh

4
v − h4

uh
2
v

h1
uh

2
v − h2

uh
1
v

v(x) =
h4
uh

1
v − h1

uh
4
v

h1
uh

2
v − h2

uh
1
v

(6)

where hi
u,h

i
v are the i-th parameter of the 4D homogeneous

plane parameters.
The 2D Gaussian at (u, v) is evaluated as:

G(u) = exp

(
−u2 + v2

2

)
(7)

The 2D Gaussians are sorted along the camera ray by
their center depth and organized into image tiles. Per-pixel
color is rendered via volumetric alpha blending:

c(x) =
∑
i=1

ciαiGi(u(x))

i−1∏
j=1

(1− αjGj(u(x))) (8)

where depth and normal can be rendered similarly.

3.2. Analytic Camera Pose Jacobian
One major advantage of Gaussian Splatting is its analyti-
cal formulation of gradient flow for model parameters, en-
abling real-time full-resolution rendering. However, it as-
sumes posed images as input and does not provide gradi-
ents for camera poses. To accelerate optimization, we de-
rive the analytic Jacobian of the camera pose for 2D Gaus-
sian Splatting and implement it using a CUDA kernel. This

formulation has potential applications for a wide range of
tasks involving pose estimation in surface-based Gaussian
Splatting.

We use Lie algebra to derive the minimal Jacobians for
the camera pose matrix from the world coordinate system
to the camera’s local coordinate system, defining TCW ∈
SE(3) and τ ∈ se(3). Since 2DGS backpropagates gra-
dients to MT = WH during the optimization of the 3D
mean, we require the partial derivative ∂MT

∂τ . Let K ∈
R4×4 represent the camera projection matrix. Then, equa-
tion 3 is rewritten as:

x = MT (u, v, 1, 1)T = KTCWH(u, v, 1, 1)T (9)

Using the chain rule, the partial derivatives are computed
as:

∂MT

∂τ
=

∂MT

∂W

∂W

∂TCW

∂TCW

∂τ
, (10)

∂TCW

∂τ
=


0 −RCW

×
:,1

0 −RCW
×
:,2

0 −RCW
×
:,3

I −tCW
×

 (11)

where RCW ∈ SO(3) and tCW ∈ R3 denote the rota-
tion and translation parts of TCW , respectively. The nota-
tion × represents the skew-symmetric matrix of a 3D vector,
and RCW :,i denotes the ith column of RCW .

2DGS also renders a normal map, which can be super-
vised using the loss computed from the rendered normals.
Let nc denote the camera-space normal. The normal of a
2D Gaussian in the camera’s local coordinate system is de-
fined as:

nc = TCW tw (12)
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where tw is the surface normal in the world coordinate sys-
tem.

Borrowing the notation of the left Jacobian for Lie
groups from [49], the partial derivative is given by:

∂nc

∂τ
=

Dnc

DTCW
=

[
I −n×

c

]
(13)

Further details of the derivation are provided in the sup-
plementary material.

3.3. Warp Field
To model time-varying deformations, we use a warp-field
represented by a coordinate-based network [64, 65]. In our
hand-held single-camera setup, the limited view coverage
of dynamic objects necessitates structural priors in the mo-
tion representation. For this, we employ a compact MLP
as the warp-field to estimate transitions from the canonical
Gaussians following [64].

Given time t and center position x of 2D Gaussians in
canonical space as inputs, the deformation MLP fθ pro-
duces offsets, which subsequently transform the canonical
2D Gaussians to the deformed space:

(δx, δr, δs) = fθ(γ1(x), γ2(t)) (14)

where δx ∈ R3, δr ∈ SO(3), δs ∈ R2 denotes the offsets
of 2D Gaussian’s mean position, rotation and scale respec-
tively, γ denotes the frequency-based positional encoding
[31]. For deformable SLAM applications, we leverage a
CUDA-optimized MLP implementation [33] to enable fast,
interactive reconstruction.

3.4. Tracking and Mapping Framework
Our SLAM method follows the standard tracking and map-
ping architecture, where the tracking module is in charge of
fast online camera pose estimation while the mapping per-
forms a relatively more involved joint opimtization of the
camera poses, geometry and motion of selected keyframes.
Further details of the hyperparameters are available in the
supplementary material.

3.4.1. Tracking
The tracking module estimates the coarse camera pose for
the latest incoming frame. This is achieved by minimiz-
ing the photometric and depth rendering errors between the
sensor observation and the rendering from the deformable
Gaussian model. Unlike static 3DGS SLAM methods, we
estimate the camera pose relative to the warped Gaussians at
the latest keyframes timestamp tkf , assuming the deformed
scene structure at tkf is closest to the current state. We de-
fine photometric rendering loss as:

Lp =
∥∥I(Gcano,TCW , tkf )− Ī

∥∥
1

(15)

Figure 3. 2D Gaussian’s Surface Normal Rendering based on
Different Initialization. Left: Random initialization. Right: Our
initialization aligned with sensor measurement.

Here I(G,TCW ) denotes a rendered color image from
the cannonical Gaussians Gcano, timestamp of the latest
keyframe tkf and camera pose TCW , and Ī is an observed
image. Similarly, we also minimize geometric depth error:

Lg =
∥∥D(Gcano,TCW , tkf )− D̄

∥∥
1

(16)

Following MonoGS [29], we further optimize affine
brightness parameters. Keyframes are selected every N-th
frame and sent to the mapping process for further refine-
ment.

3.4.2. Mapping
The mapping module performs joint optimization of the
camera pose, canonical Gaussians, and the warp field within
a sliding window.

Gaussian Management When a new keyframe is regis-
tered, we add new Gaussians to the canonical Gaussians
Gcano, based on the back-projected point cloud from the
RGB-D observations. Unlike 3DGS, 2DGS explicitly en-
codes surface normal information in its rotation vector,
making it beneficial to initialize using surface normals es-
timated from sensor depth measurements. To achieve this,
we compute the surface normals of the current depth obser-
vation by taking the finite difference of neighboring back-
projected depth points and assign them as the normal vec-
tors of the 2D Gaussianss tw. This is formulated as:

tw =
∇xpd ×∇ypd

|∇xpd ×∇ypd|
(17)

where pd denotes points back-projected by the current
sensor depth observation. We store the computed nor-
mal information as a 2D image Nsensor for normal su-
pervision. Pruning and densification parameters follow
MonoGS, which effectively prunes the wrongly inserted
Gaussians in the canonical space due to the object move-
ment.

4D Map optimization We perform joint optimization of
the camera ego-motion, appearance, geometry and scene
dynamics. In a single-camera setup, the lack of spatiotem-
porally dense observations makes fully capturing dynamic

5



scenes challenging, as complete spatial (xyz) coverage over
time (t) is only feasible with multi-camera systems. To ad-
dress this, we introduce regularization terms for both shape
and motion.

In addition to photometric and depth losses, we apply a
normal regularization based on sensor measurements to bet-
ter align 2D Gaussians. Unlike the original 2DGS methods,
which compute normals by finite differences of rendered
depth during every optimization step—leading to high com-
putational costs—we instead propose to use normals pre-
computed from depth input as supervision. This reduces
computational overhead, as normals are calculated only
when a new keyframe is inserted:

Ln =
∑

i∈h×w

(1− nT
i Nsensor,i) (18)

To constrain motion in unobserved regions, we apply an
as-rigid-as possible regularization loss LARAP from [27]
to the Gaussian means. Additionally, we introduce a novel
surface normal rigidity loss, constraining the 2D Gaussians’
surface normals to stay similar between timesteps t1 and t2,
preserving local surface rigidity:

LARAP n = wi,j

∥∥(tw)Ti,t1(tw)j,t1 − (tw)
T
i,t2(tw)j,t2

∥∥
1

(19)
where wi,j is a distance-based weighting factor like
LARAP . We apply ARAP regularizers between the oldest
and latest keyframe in the current window.

Together with the isotropic loss Liso proposed in [29],
we minimize the following total cost function:

Ltotal = λpLp + λgLg + λnLn

+ λisoLiso + LARAP + LARAP n (20)

The optimization is based on the sliding window heuris-
tics in [11], with two additional keyframes randomly se-
lected from the history.

Global Optimization Sliding window-based optimiza-
tion prioritizes the latest frame, causing past keyframe in-
formation to degrade over time. After tracking, if required
we can perform global optimization to finalize the map,
which takes less than 1 minute on an RTX 4090. During
this step, the poses and number of Gaussians are fixed, and
one keyframe is randomly selected per iteration. The pro-
cess uses the normal consistency loss of 2DGS, ensuring
global consistency despite being relatively slow.

3.5. Dataset Generation
We introduce Sim4D, a new synthetic dataset for 4D recon-
struction. Recently, a large number of photo-realistic, ani-
mated 3D meshes have become available [2, 9]. Combined
with open-source graphics software [3, 8], such meshes pro-
vide a scalable way of generating datasets for non-rigid 4D

reconstruction. The data generation pipeline is illustrated in
Fig. 4.
Meshes and background. We collected 50 high-quality,
animated 3D meshes from Objaverse [9] and Sketchfab [2],
all of which are under CC-BY license. The collected
meshes exhibit a wide variety of motions, including non-
rigid deformation and topological changes. We then place
the object inside a cube and randomize the background tex-
ture. Texture maps are collected from Poly Haven [1] and
are all under CC0 license.
Rendering. We render 240 to 540 frames for each object.
The camera trajectories are defined along arcs of 20 de-
grees, and test viewpoints are defined outside of these arcs
to evaluate the performance of novel-view synthesis and to
quantify the accuracy of the reconstructed geometry. At
each timestamp, the RGB image, ground truth depth, sur-
face normals, and foreground mask are rendered and the
camera intrinsics/extrinsics saved. Please refer to the sup-
plementary material for additional details.

4. Evaluation
4.1. Experimental Setup
We extensively evaluate our non-rigid SLAM method on
both synthetic and real-world datasets. Previous non-rigid
RGB-D SLAM work has primarily focused on qualita-
tive demonstrations using limited datasets, showcasing the
early-stage potential of the field. To advance research, we
introduce a quantitative evaluation protocol with the new
Sim4D dataset. Our evaluation covers camera pose accu-
racy, as well as the appearance and geometric quality of the
reconstructed models. Additionally, we demonstrate real-
world performance using a self-captured dataset.

While designed primarily for dynamic scenes, our
method is the first to leverage surface Gaussian splatting for
both static SLAM and non-rigid RGB-D reconstruction. To
further validate our approach, we perform a detailed quan-
titative component-wise ablation analysis.

Metrics and Datasets For our main Non-Rigid SLAM
evaluation, we evaluate our method on 8 sequences from
the Sim4D dataset. We first report ATE RMSE for trajectory
evaluation. To assess SLAM map quality, we report depth
rendering error (L1 error) for geometry and PSNR, SSIM,
and LPIPS for appearance evaluation. For Sim4D, met-
rics are calculated from test views (extrapolated positions
across different timestamps). The estimated and ground
truth trajectories are aligned on the first frame, and test
view positions are queried in the ground truth trajectory’s
coordinate system. Details about the test viewpoints are
in the supplementary material. Since SurfelWarp [13] re-
quires explicit foreground segmentation, we collect its re-
sults only on pixels with valid reconstruction. For Static
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Figure 4. Sim4D dataset. We create a new dataset for 4D reconstruction by rendering animated 3D meshes.

SLAM ablation, we report ATE RMSE, rendering perfor-
mance, and TSDF-fused mesh metrics, following the proto-
col in [43]. We evaluate our method on the Replica [50]
dataset and the TUM RGB-D dataset [51]. To isolate the
impact of scene representation from system differences, we
replaced MonoGS’s representation with 2DGS while keep-
ing all other system configurations identical. For Offline
Non-Rigid Reconstruction ablation, we report the aver-
age geometry and appearance rendering metrics on sub-
sets of the DeepDeform [5], KillingFusion [47], and iPhone
datasets [12], which are used in [56]. Numerical quantities
for each sequence is available in supplementary material.
Since [56] primarily focuses on object shape completion,
metrics are calculated only within the given segmentation
mask. The camera pose is provided by the dataset, and
pose optimization is disabled to focus solely on reconstruc-
tion performance. We perform 30000 iteration for training,
which takes approximately 30 mins.

Baseline Methods For quantitative non-rigid SLAM
evaluation, we compare our method with SurfelWarp [13],
the only non-rigid RGB-D SLAM method with publicly
available code. For component-wise ablation analysis, we
compare against MonoGS [29] for static SLAM evaluation
and Morpheus [56] for offline reconstruction.

Implementation Details Our SLAM system runs on a
desktop equipped with an Intel Core i9-12900K (3.50GHz)
processor and a single NVIDIA GeForce RTX 4090 GPU.
The camera pose jacobian for 2DGS, described in Sec-
tion 3.2, is implemented using a CUDA rasterizer, similar
to other gradients in Gaussian Splatting. For real-world data
capture, we used the Realsense D455.

4.2. Quantitative Evaluation
Table 1 compares our method with SurfelWarp [13]. Our
method outperforms SurfelWarp across all metrics. To
analyze this further, Fig. 5 provides qualitative visualiza-
tions and trajectory plots for the modular vehicle sequence.

Ours

SurfelWarp

Figure 5. Qualitative comparison to SurfelWarp. Left: Ren-
dered image, Middle: Rendered normal map, Right: Estimated
camera trajectory

Since SurfelWarp relies on a foreground mask, its recon-
struction lacks scene completeness. In contrast, our method
reconstructs the entire scene within a joint optimization
framework, providing more comprehensive coverage. Ad-
ditionally, compared to SurfelWarp’s back-projection and
Surfel fusion scheme, our differentiable rendering-based
optimization enforces multi-view consistency over time, re-
sulting in superior camera tracking and consistent 3D re-
construction. Our method achieves camera pose estimation
at approximately 1.5 fps and completes the final global op-
timization in 1 minute.

4.3. Qualitative Evaluation
Fig. 6 presents qualitative reconstruction results on real-
world dynamic scenes. Our method successfully re-
constructs dynamic scenes with non-rigid deformations,
whereas MonoGS fails to handle such complexities.

4.4. Ablation Study
Static SLAM Table 2 provides the camera ATE and 3D
reconstruction evaluation results. Our 2DGS-based imple-
mentation shows competitive performance and achieves the
best result in 6 out of 8 sequences for camera ATE, and con-
sistently better result on rendering and 3D reconstruction
metrics. The reconstruction is visualized in Fig 7 which
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Method Category Metric curtain flag mercedes modular vehicle rhino shoe rack water effect wave toy

SurfelWarp [13]

Trajectory ATE RMSE[cm]↓ 6.10 31.9 5.21 4.21 2.81 2.16 2.60 1.45
Geometry L1 Depth[cm]↓ 49.1 50.8 5.2 10.3 44.9 4.25 46.7 47.5

Appearance
PSNR [dB] ↑ 15.78 11.04 25.7 19.45 16.76 26.3 17.3 16.4
SSIM ↑ 0.468 0.343 0.779 0.362 0.188 0.795 0.325 0.364
LPIPS ↓ 0.56 0.659 0.483 0.638 0.665 0.397 0.587 0.555

Ours

Trajectory ATE RMSE[cm]↓ 0.25 1.00 0.18 0.31 0.25 0.18 0.29 0.32
Geometry L1 Depth[cm]↓ 0.96 3.58 0.62 1.44 1.85 0.99 3.20 3.43

Appearance
PSNR [dB] ↑ 28.01 21.01 32.13 30.59 24.13 31.7 27.12 27.10
SSIM ↑ 0.787 0.601 0.894 0.801 0.742 0.901 0.795 0.794
LPIPS ↓ 0.096 0.150 0.138 0.210 0.260 0.12 0.908 0.097

Table 1. Non-rigid SLAM Evaluation on Sim4D Dataset.

MonoGS

MonoGS

Ours (𝑡 = 0)

Ours (𝑡 = 0) Ours (𝑡 = 𝑇)

Ours (𝑡 = 𝑇)

⋯

⋯

Figure 6. Qualitative Results on Real-World Datset.
Our method effectively handles dynamic objects compared to
MonoGS.

Figure 7. 3D Reconstruction Result on Replica Office4. Left:
MonoGS. Right: Ours (MonoGS-2D). Our surface Gaussian-
based approach yields more accurate geometric reconstructions.

.

Metric r0 r1 r2 o0 o1 o2 o3 o4 avg

MonoGS

ATE RMSE[cm]↓ 0.44 0.32 0.31 0.44 0.52 0.23 0.17 2.25 0.59
Depth L1[cm]↓ 3.00 3.47 4.66 3.10 6.08 6.15 4.77 4.94 4.52
Precision[%]↑ 39.0 28.8 28.9 39.7 15.8 28.0 32.5 25.5 29.7

Recall[%]↑ 44.2 34.5 32.8 47.6 24.3 30.0 35.4 28.5 34.6
F1[%] ↑ 41.5 31.4 30.7 43.3 19.1 29.0 33.9 26.9 31.9

MonoGS-2D

ATE RMSE[cm]↓ 0.42 0.43 0.35 0.19 0.19 0.22 0.27 0.80 0.36
Depth L1[cm]↓ 0.45 0.28 0.57 0.37 0.59 0.85 0.62 0.63 0.54
Precision[%]↑ 97.0 97.0 97.0 97.1 97.9 95.8 94.8 83.9 95.0

Recall[%]↑ 85.5 86.0 84.8 89.4 85.1 81.8 81.5 72.4 83.3
F1[%]↑ 90.9 91.3 90.5 93.1 91.1 88.2 87.6 77.7 88.8

Table 2. Static SLAM Ablation on Replica.

Method Metric fr1/desk fr2/xyz fr3/office avg.

MonoGS ATE RMSE[cm]↓ 1.50 1.44 1.49 1.47
Depth L1[cm]↓ 6.2 13.0 13.0 10.7

MonoGS-2D ATE RMSE[cm]↓ 1.58 1.20 1.83 1.57
Depth L1[cm]↓ 3.00 2.30 4.30 3.2

Table 3. Static SLAM Ablation on TUM

shows the comparison of the mesh generated by TSDF Fu-
sion between MonoGS and MonoGS-2D. Table 3 provides
the camera ATE and rendering metrics evaluation on TUM

Method Metric KillingFusion DeepDeform iPhone

Morpheus [56]

Depth L1[cm]↓ 3.2 1.9 2.4
PSNR [dB] ↑ 27.02 26.81 25.28
SSIM ↑ 0.77 0.81 0.46
LPIPS ↓ 0.40 0.38 0.63

Ours

Depth L1[cm]↓ 4.9 1.1 0.57
PSNR [dB] ↑ 31.13 24.15 27.54
SSIM ↑ 0.93 0.90 0.79
LPIPS ↓ 0.13 0.27 0.26

Table 4. Offline Non-Rigid Reconstruction Ablation: Render-
ing Error Metrics on Real-world Dataset.

Figure 8. Non-rigid Reconstruction Results. Our method flex-
ibly models non-rigid deformations without requiring any shape
templates or foreground/background separation.

dataset. Our method shows on par camera ATE but shows
the increased geometric reconstruction quality.

Offline Non-rigid RGB-D Surface Reconstruction Ta-
ble 4 reports offline reconstruction results, where cam-
era poses are given. Our 2DGS+MLP deformation model
shows competitive rendering performance compared to
NeRF based methods. Note that Gaussian Splatting has the
additional advantage of its rendering speed. We further pro-
vide qualitative visualizations in Fig. 8.

5. Conclusion
We presented the first tracking and mapping method for
non-rigid surface reconstruction using Surface Gaussian
Splatting. Our approach integrates a 2DGS + MLP warp-
field SLAM framework with camera pose estimation and
regularization, leveraging RGB-D input. To support further

8



research, we also introduced a novel dataset for dynamic
scene reconstruction with reliable ground truth. Experimen-
tal results demonstrate that our method outperforms tradi-
tional non-rigid SLAM approaches.

Limitations: Our method has primarily been tested on
small-scale scenes; extending it to complex real-world sce-
narios may require 2D priors like point tracking or optical
flow. The current implementation runs at 1.5 fps, limiting
real-time use. Developing interactive dynamic scene scan-
ning remains important future work.
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discussions.
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4DTAM: Non-Rigid Tracking and Mapping via Dynamic Surface Gaussians

Supplementary Material

We encourage readers to watch the supplementary video
for additional details and qualitative results.

7. Implementation Details
7.1. System Details and Hyper parameters
Non-Rigid SLAM: We set the learning weights as fol-
lows: λp = 0.9, λg = 0.1, λiso = 10.0 and λn = 0.002.
For the ARAP regularization [27], we use a nearest neigh-
bor count of 20, a radius of 0.05, and an exponential decay
weight of 500. Keyframes are selected with N = 1. For
the MLP, we use an 8-layer architecture with 256 neurons
per layer. Frequency encoding is set to 1 for time and 4
for position. MLP is implemented with CUDA-optimized
CutlassMLP in tiny-cuda-nn [32] for the fast optimization.

Static SLAM Ablation: We followed the same hyperpa-
rameters as MonoGS [29], but we use normal loss Ln with
the weight λn = 0.01 for the entire mapping process and
λg = 0.5 for the final refinement. For the Replica 3D re-
construction evaluation, we have used the script introduced
in [43].

Offline Non-rigid RGB-D Reconstruction Ablation:
Camera poses are provided by the dataset and remain fixed
during training. For the MLP, we adopt the same archi-
tecture described in [64], consisting of an 8-layer network
with 256 dimensions per layer, where a concatenated fea-
ture vector is input to the fourth layer. The positional en-
coding frequencies are set to 6 for time and 10 for position.
Following the approach in [7, 56], we evaluate the geo-
metric and appearance metrics against the input views and
report the average values.

8. Camera Pose Jacobian
We provide the detail of the derivation of camera pose jaco-
bian of 2D Gaussian Splatting in 3.2.

We use the notation from [49]. Let T ∈ SE(3) and
τ = (ρ,θ) ∈ se(3), the left-side partial derivative on the
manifold is defined as:

Df(T )

DT
≜ lim

τ→0

Log(f(Exp(τ) ◦ T ) ◦ f(T )−1)

τ
(21)

Eq 11:
T = Exp(τ ) = exp(τ∧)

= exp

 6∑
j=1

Ejτj

 , j = 1, . . . , 6, τ ∈ R6. (22)

where the matrices Ej ∈ R4×4 are the SE(3) group
generators and form a basis for se(3):

E1 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 E2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0



E3 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 E4 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0



E5 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 E6 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 .

(23)

We get the partial derivative as follows:
∂

∂τj
exp(τ∧)

∣∣∣∣
τ=0

= Ej , j = 1, . . . , 6. (24)

Therefore, the full derivative is given as:

∂T

∂τ

∣∣∣∣
τ=0

= T
∂
(∑6

j=1 Ejτj

)
∂τ

∣∣∣∣
τ=0

(25)
Since the meaningful elements of the camera T is 12

number variables, we stack the elements for 12 × 6 matrix
and we obtain

∂T

∂τ

∣∣∣∣
τ=0

=


0 −R×

:,1

0 −R×
:,2

0 −R×
:,3

I −t×

 . (26)

where R ∈ SO(3) and t ∈ R3 denote the rotation and
translation parts of T .

Eq 13:
∂nc

∂τ

∣∣∣∣
τ=0

=
Dnc

DTCW
= lim

τ→0

Exp(τ )nc − nc

τ
(27)

= lim
τ→0

(I + τ∧) · nc − nc

τ
(28)

= lim
τ→0

τ∧ · nc

τ
(29)

= lim
τ→0

θ×nc + ρ

τ
(30)

= lim
τ→0

−n×
c θ + ρ

τ
(31)

=
[
I −n×

c

]
(32)
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9. Sim4D Training/Test Views

We define the training and test views on a sphere, with its
center representing the target object. In spherical coordi-
nates (r, θ, ϕ), we set r = 2.0. The training view is sam-
pled from two arcs on the sphere’s surface, defined by θ ∈
[−10◦, 10◦] and ϕ ∈ [−10◦, 10◦]. The test views are sam-
pled from a circle on the sphere’s surface that pass through
four key points: (θ, ϕ) = (5◦, 0◦), (0◦, 5◦), (−5◦, 0◦), and
(0◦,−5◦). These points are chosen to ensure uniform sam-
pling around the target object while maintaining a clear sep-
aration between the training and test views.

Figure 9. Training and Test Views on the Sim4D Dataset: Blue
indicates training views, and Red indicates test views. Views are
sampled (top right) from an arc on an object-centered sphere (top
left) for dynamic scene reconstruction (bottom).

10. Further Ablation Analysis

10.1. Normal Rigidity Loss

Table 5 presents the quantitative results demonstrating the
effect of the normal rigidity loss defined in Equation 19.
The normal rigidity loss improves the overall geometric
metrics, such as camera ATE and L1 Depth, for the bench-
mark sequences by preserving the local geometric consis-
tency of 2D Gaussians.

ATE RMSE L1 Depth PSNR SSIM LPIPS
Ours full 0.28 1.71 28.47 0.820 0.12
w/o LARAP n 0.52 2.00 29.04 0.853 0.13

Table 5. Ablation Study on LARAP n. We report the average
number of Sim4D dataset.

10.2. Monocular Depth Prior
While our method was primarily tested with RGB-D cam-
era input, we conducted an ablation study using depth
input from the state-of-the-art monocular prediction net-
work [58], as shown in Table 9. The results demonstrate
performance competitive with SurfelWarp, highlighting the
potential for purely monocular non-rigid SLAM.

10.3. Static SLAM Ablation Analysis
Replica: Table 8 shows the photometric rendering perfor-
mance analysis on the Replica dataset. The results demon-
strate that the 2DGS-based SLAM approach offers an ad-
vantage in achieving accurate appearance reconstruction.

TUM: Table 6 presents the full ablation analysis on the
TUM dataset. The 2DGS-based approach maintains com-
petitive ATE and appearance metrics while achieving sig-
nificantly better geometric rendering accuracy, as reflected
in the Depth L1 error.

Method Metric fr1 fr2 fr3

MonoGS ATE RMSE [cm] ↓ 1.50 1.44 1.49
Depth L1 [cm] ↓ 6.2 13.0 13.0
PSNR [dB] ↑ 23.5 24.65 25.09
SSIM ↑ 0.775 0.785 0.842
LPIPS ↓ 0.26 1 0.201 0.200

MonoGS-2D ATE RMSE [cm] ↓ 1.58 1.2 1.83
Depth L1 [cm] ↓ 3.0 2.3 4.3
PSNR [dB] ↑ 23.63 24.47 24.05
SSIM ↑ 0.782 0.79 0.826
LPIPS ↓ 0.251 0.228 0.223

Table 6. Static SLAM Ablation on TUM Dataset. Comparison
of ATE RMSE, Depth L1, and Rendering Performance Metrics.

Memory Analysis Table 7 presents the average memory
usage on the TUM dataset sequences. Due to the geometri-
cally accurate alignment, 2D Gaussians require fewer prim-
itives to represent the scene, resulting in reduced memory
consumption.

Memory Usage [MB]
MonoGS-2D MonoGS

2.73MB 3.97MB
Table 7. Memory Analysis on TUM RGB-D dataset.

10.4. Offline Non-Rigid RGB-D Reconstruction Ab-
lation

Table 10 provides the full evaluation details of the offline
non-rigid RGB-D reconstruction ablation analysis.
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Metric room0 room1 room2 office0 office1 office2 office3 avg

MonoGS
PSNR [dB] ↑ 34.83 36.43 37.49 39.95 42.09 36.24 36.70 37.50

SSIM ↑ 0.954 0.959 0.9665 0.971 0.977 0.964 0.963 0.96
LPIPS ↓ 0.068 0.076 0.075 0.072 0.055 0.078 0.065 0.07

MonoGS-2D
PSNR [dB] ↑ 36.21 37.81 38.7 43.45 43.8 37.48 37.43 39.14

SSIM ↑ 0.966 0.969 0.9737 0.985 0.984 0.972 0.971 0.975
LPIPS ↓ 0.04 0.042 0.044 0.025 0.029 0.04 0.039 0.038

Table 8. Static SLAM Ablation: Rendering Performance Metrics [43] on Replica Dataset

Method Category Metric curtain flag mercedes modular vehicle rhino shoe rack water effect wave toy

Ours (Monocular)

Trajectory ATE RMSE[cm]↓ 6.23 16.29 4.90 1.86 3.17 8.02 5.52 7.21
Geometry L1 Depth[cm]↓ 74.2 155 59.2 38.0 37.7 89.8 72.4 80.8

Appearance
PSNR [dB] ↑ 17.73 16.22 20.72 26.28 21.48 17.49 18.86 17.98
SSIM ↑ 0.461 0.455 0.636 0.578 0253 0.448 0.390 0.441
LPIPS ↓ 0.297 0.517 0.282 0.380 0.339 0.391 0.258 0.281

Table 9. Non-rigid SLAM Evaluation on Sim4D Dataset with Monocular Depth Prior.

KillingFusion DeepDeform iPhone
frog duck snoopy seq002 seq004 seq028 teddy mochi haru

Morpheus [56]

Depth L1 [cm] 4.37 3.01 2.30 2.08 1.24 2.26 5.40 0.31 1.63
PSNR [dB] ↑ 27.2 28.17 25.73 27.21 26.94 26.30 23.40 28.12 24.34
SSIM ↑ 0.802 0.716 0.779 0.809 0.823 0.795 0.237 0.623 0.510
LPIPS ↓ 0.31 0.419 0.483 0.301 0.428 0.397 0.776 0.55 0.564

Ours

Depth L1 [cm] 0.65 1.91 12.1 0.78 1.07 1.30 0.32 0.22 0.12
PSNR [dB] ↑ 33.72 32.75 26.95 24.36 24.13 24.02 23.89 36.15 22.60
SSIM ↑ 0.941 0.949 0.899 0.897 0.897 0.902 0.739 0.926 0.690
LPIPS ↓ 0.063 0.073 0.257 0.245 0.313 0.241 0.259 0.131 0.391

Table 10. Offline RGB-D Reconstruction Results
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Christian Theobalt, and Marc Stamminger. VolumeDeform:
Real-time Volumetric Non-rigid Reconstruction. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), 2016. 3

[20] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian
Sminchisescu. Human3. 6m: Large scale datasets and pre-
dictive methods for 3d human sensing in natural environ-
ments. IEEE transactions on pattern analysis and machine
intelligence, 36(7):1325–1339, 2013. 3

[21] M. M. Johari, C. Carta, and F. Fleuret. ESLAM: Efficient
dense slam system based on hybrid representation of signed
distance fields. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2023. 2

[22] Olaf Kähler, Victor Adrian Prisacariu, and David W. Murray.
Real-time large-scale dense 3d reconstruction with loop clo-
sure. In Proceedings of the European Conference on Com-
puter Vision (ECCV), 2016. 2

[23] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neu-
ral 3D mesh renderer. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 3907–3916, 2018. 2

[24] Nikhil Keetha, Jay Karhade, Krishna Murthy Jatavallabhula,
Gengshan Yang, Sebastian Scherer, Deva Ramanan, and
Jonathon Luiten. Splatam: Splat, track map 3d gaussians
for dense rgb-d slam. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2024.
2

[25] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3D gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics
(TOG), 2023. 2

[26] Matthew Loper, Naureen Mahmood, Javier Romero, Ger-
ard Pons-Moll, and Michael J. Black. SMPL: A skinned
multi-person linear model. ACM Trans. Graphics (Proc.
SIGGRAPH Asia), 34(6):248:1–248:16, 2015. 3

[27] Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and
Deva Ramanan. Dynamic 3d gaussians: Tracking by per-
sistent dynamic view synthesis. 3DV, 2024. 3, 6, 1

[28] Ruibin Ma, Rui Wang, Yubo Zhang, Stephen Pizer,
Sarah K McGill, Julian Rosenman, and Jan-Michael Frahm.
Rnnslam: Reconstructing the 3d colon to visualize missing
regions during a colonoscopy. Medical image analysis, 72:
102100, 2021. 3

[29] Hidenobu Matsuki, Riku Murai, Paul H. J. Kelly, and An-
drew J. Davison. Gaussian Splatting SLAM. 2024. 2, 5, 6,
7, 1

4

https://polyhaven.com/textures/fabric
https://polyhaven.com/textures/fabric
https://sketchfab.com/
https://ollieboyne.github.io/BlenderSynth
https://ollieboyne.github.io/BlenderSynth


[30] J. McCormac, A. Handa, A. J. Davison, and S. Leutenegger.
SemanticFusion: Dense 3D semantic mapping with convo-
lutional neural networks. In Proceedings of the IEEE In-
ternational Conference on Robotics and Automation (ICRA),
2017. 2

[31] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In Proceedings of the European Conference on Com-
puter Vision (ECCV), 2020. 2, 5

[32] Thomas Müller. tiny-cuda-nn, 2021. 1
[33] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-

der Keller. Instant neural graphics primitives with a mul-
tiresolution hash encoding. ACM Transactions on Graphics
(TOG), 2022. 2, 5

[34] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D.
Kim, A. J. Davison, P. Kohli, J. Shotton, S. Hodges, and A.
Fitzgibbon. KinectFusion: Real-Time Dense Surface Map-
ping and Tracking. In Proceedings of the International Sym-
posium on Mixed and Augmented Reality (ISMAR), 2011. 2

[35] R. A. Newcombe, S. Lovegrove, and A. J. Davison. DTAM:
Dense Tracking and Mapping in Real-Time. In Proceedings
of the International Conference on Computer Vision (ICCV),
2011. 2

[36] Richard A Newcombe, Dieter Fox, and Steven M Seitz.
Dynamicfusion: Reconstruction and tracking of non-rigid
scenes in real-time. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2015.
3

[37] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable volumetric rendering: Learn-
ing implicit 3d representations without 3d supervision. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2020. 2

[38] Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien
Bouaziz, Dan B Goldman, Steven M. Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable neural radiance fields.
ICCV, 2021. 3

[39] Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang,
Qing Shuai, Hujun Bao, and Xiaowei Zhou. Neural body:
Implicit neural representations with structured latent codes
for novel view synthesis of dynamic humans. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 9054–9063, 2021. 3

[40] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-NeRF: Neural Radiance Fields
for Dynamic Scenes. 3

[41] Juan J. Gomez Rodriguez, J. M. M Montiel, and Juan D.
Tardos. Nr-slam: Non-rigid monocular slam. IEEE Transac-
tions on Robotics (T-RO), 2023. 3

[42] Martin Rünz and Lourdes Agapito. Co-fusion: Real-
time segmentation, tracking and fusion of multiple objects.
In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2017. 3

[43] Erik Sandström, Yue Li, Luc Van Gool, and Martin R. Os-
wald. Point-slam: Dense neural point cloud-based slam. In
Proceedings of the International Conference on Computer
Vision (ICCV), 2023. 2, 7, 1, 3
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